另外,有没有其他方法可以让我开始让AI Agent在没有OpenAI Gym的帮助下玩特定的视频游戏?
banana-gym
.
创建新环境
请参阅存储库的主页面:
https://github.com/openai/gym/blob/master/docs/creating-environments.md
步骤是:
>使用PIP包结构创建新的存储库
它看起来应该是这样的
gym-foo/ README.md setup.py gym_foo/ __init__.py envs/ __init__.py foo_env.py foo_extrahard_env.py
有关其内容,请点击上面的链接.那里没有提到的细节特别是foo_env.py中的某些函数应该是什么样子.查看示例并在gym.openai.com/docs/有所帮助.这是一个例子:
class FooEnv(gym.Env): metadata = {'render.modes': ['human']} def __init__(self): pass def _step(self, action): """ Parameters ---------- action : Returns ------- ob, reward, episode_over, info : tuple ob (object) : an environment-specific object representing your observation of the environment. reward (float) : amount of reward achieved by the previous action. The scale varies between environments, but the goal is always to increase your total reward. episode_over (bool) : whether it's time to reset the environment again. Most (but not all) tasks are divided up into well-defined episodes, and done being True indicates the episode has terminated. (For example, perhaps the pole tipped too far, or you lost your last life.) info (dict) : diagnostic information useful for debugging. It can sometimes be useful for learning (for example, it might contain the raw probabilities behind the environment's last state change). However, official evaluations of your agent are not allowed to use this for learning. """ self._take_action(action) self.status = self.env.step() reward = self._get_reward() ob = self.env.getState() episode_over = self.status != hfo_py.IN_GAME return ob, reward, episode_over, {} def _reset(self): pass def _render(self, mode='human', close=False): pass def _take_action(self, action): pass def _get_reward(self): """ Reward is given for XY. """ if self.status == FOOBAR: return 1 elif self.status == ABC: return self.somestate ** 2 else: return 0
使用您的环境
import gym import gym_foo env = gym.make('MyEnv-v0')
例子
> https://github.com/openai/gym-soccer
> https://github.com/openai/gym-wikinav
> https://github.com/alibaba/gym-starcraft
> https://github.com/endgameinc/gym-malware
> https://github.com/hackthemarket/gym-trading
> https://github.com/tambetm/gym-minecraft
> https://github.com/ppaquette/gym-doom
> https://github.com/ppaquette/gym-super-mario
> https://github.com/tuzzer/gym-maze